Получение витаминов в и а

Получение витаминов в и а thumbnail

Среди биологически активных веществ, необходимых для нормального развития организма животных, одно из первых мест занимают витамины. Важное значение витаминов объясняется их участием в биохимических реакциях, способностью служить катализаторами процессов, обеспечивающих обмен веществ в организме и его связь с окружающей средой.

Витамины — низкомолекулярные органические соединения, присутствующие в живых клетках в низких концентрациях и являющиеся компонентами энзиматических систем, ответственных за различные реакции.

Производство витаминов осуществляется следующими основными путями:

1. Экстракция витаминных препаратов из растительного или животного сырья. С этого направления начиналась витаминная промышленность, поскольку первые витаминные препараты были получены именно таким путем. Например, витамин В12 получали из сырой печени крупного рогатого скота, каротин — из моркови. Но в настоящее время доля витаминов, получаемых этим методом, незначительна ввиду очень низкого содержания их в природном сырье и ограниченности сырьевых ресурсов.

2. Химический синтез витаминов. Производство синтетических витаминов занимает, пожалуй, ведущее место в современной витаминной промышленности, поскольку основная номенклатура витаминных препаратов представлена веществами, полученными химическим синтезом из химических видов сырья или сочетанием химического синтеза с биосинтезом. Однако такой способ производства витаминов представляет собой сложный, многоступенчатый процесс, сопряженный с большими производственными затратами, что делает конечные продукты слишком дорогими.

3.Биосинтез витаминов. Некоторые витамины, имеющие сложное строение, химический синтез которых в крупномасштабном производстве невозможен или экономически нецелесообразен, получают исключительно биосинтезом, с применением микроорганизмов, способных к сверхсинтезу и накоплению определенных витаминов. Примером может служить производство цианкобаламина (витамина В12). Микробиологический синтез применяется также в производстве витаминных концентратов, предназначенных для сельского хозяйства, поскольку в данном случае обычно в индивидуальном чистом виде витамины не выделяют.

Следует отметить условность такого деления витаминной промышленности. Производство некоторых витаминов включает и химические стадии и стадии биотрансформации с применением микроорганизмов (например, производство аскорбиновой кислоты). Витамин рибофлавин получают и синтетическим и микробиологическим путями. Некоторые витаминные препараты (например, витамин D2) получают путем химической модификации провитаминов или витаминов, выделенных из растительных клеток или органов животных.

Использование витаминов в качестве добавок в корма животных требует крупномасштабного производства, поэтому возникла необходимость в более дешевых способах изготовления витаминов. Таким перспективным способом получения ряда витаминов оказался микробиологический синтез.

Для нормальной деятельности организма животных и птиц необходимо включать в рационы витамины A, D, К, группы В и др.

Микробиологическая промышленность нашей страны выпускает кормовые препараты витаминов В2 и B12. Кроме того, микробиологическим можно считать и производство витамина D2, который образуется из эргостерина при облучении ультрафиолетовым светом кормовых дрожжей.

Микроорганизмы содержат много различных витаминов, которые чаще всего являются компонентами ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств культуры микроорганизмов и условий их культивирования. Так, кормовые дрожжи, получаемые на гидролизатах древесины и углеводородах, сравнительно богаты витаминами группы В и содержат (в расчете сухую биомассу) следующие витамины (мг/кг):

Тиамин (В1) — 15-18

Рибофлавин (В2) — 45-68

Биотин — 1,6-3,0

Инозит — 400 -5000

Фолиевая кислота — 3,4-21,5

Никотиновая кислота — 440-610

Продукцию микроорганизмами отдельных витаминов можно увеличить, изменяя состав питательной среды. Например, количество витамина В2 (рибофлавина) в биомассе дрожжей зависит от интенсивности аэрации и содержания железа в среде.

На содержание витаминов в клетках дрожжей заметное влияние оказывают микроэлементы. Так, небольшие добавки марганца способствуют накоплению в клетках дрожжей инозита, а повышенные дозы кобальта приводят к увеличению содержания витамина В6 (пиридоксина).

Производство кормового концентрата витамина В2 (рибофлавин).Витамин В2 входит в структуру многих ферментов, в составе которых участвует в клеточном дыхании, синтезе белков и жиров, регулировании состояния нервной системы, функции печени и т.д. При его недостатке резко замедляется рост, нарушается белковый обмен.

Суточная потребность в витамине В2 составляет для птиц 3 — 4 г (кристаллического препарата) на 2 т корма, а для свиней 10 — 15 мг на 100 кг живой массы.

В природных условиях источниками рибофлавина являются высшие растения, дрожжи, мицелиальные грибы и бактерии. Большинство микроорганизмов образуют свободный рибофлавин.

В 30-е годы XX в. был найден суперпродуцент витамина — микроскопический гриб Eremothecium ashbyii, образующий до 6000 мкг рибофлавина на 1 г сухого вещества культуральной жидкости.

Для получения витамина В2 можно также использовать культуру дрожжей, ацетобутиловые бактерии, продуцент лизина Brevibakterium и др.

Микроорганизмы — продуценты рибофлавина

Микроорганизмы — продуценты Выход витамина (мг%)
Clostridium acetobytylicum
Mycobakterium smegmatis
Mycocandida riboflavina
Candida flaveri
Eremothecium ashbyii 2480-6000
Ashbyii gossipii

Технология получения кормового препарата витамина В2 микробиологическим способом достаточно проста. В качестве микроорганизма-продуцента обычно используют Е. ashbyii.

Технологический процесс производства состоит из трех основных стадий:

1. Аэробная ферментация.

2. Термолиз и концентрирование.

3. Сушка, размол, гранулирование и упаковка.

Посевной материал и стерильный воздух получают по типовой, для многих микробиологических производств, схеме. Ферментация осуществляется в типовых биореакторах объемом 63 — 100 м3 в стерильных условиях при температуре 28 — 30 °С.

Основными ингредиентами питательной среды являются соевая мука, меласса, технический жир и минеральные соли (СаСОз, КН2Р04). Продуцент витамина В2 выращивают также на средах, где источником углерода является глюкоза, сахароза, крахмал, пшеничная мука. В качестве источника азота используют молочную сыворотку, рыбную и кукурузную муку или экстракт, казеин. Развитие гриба-продуцента стимулируется добавлением ненасыщенных жирных кислот, биотина, тиамина, инозита, ростовых веществ, содержащихся в зародыше пшеницы, картофельном соке и дрожжевом автолизате.

Известно использование в производственных условиях питательной среды следующего состава:

— 1 — 3 % мелассы, гидрола или глюкозы;

— 3 — 8 % кукурузного экстракта или дрожжевого автолизата;

— добавки N, Mg, Zn.

Культивирование продуцента проводят поверхностным или глубинным способом. Витамин накапливается в клетках гриба-продуцента, либо в виде предшественника — флавина дениннуклеотида, либо в свободном состоянии.

Время культивирования длится 60 — 80 ч до начала лизиса мицелия гриба и образования спор (определяется микроскопически). При этом содержание рибофлавина в культуральной жидкости достигает 1200 мг/л.

Для сохранения штамма Е. ashbyii в активном состоянии рекомендуется производить систематический его рассев на твердые питательные среды и отбирать колонии наиболее .интенсивно окрашенные в оранжевый цвет. Яркая окраска колонии коррелирует с высокой способностью к синтезу рибофлавина.

При подготовке инокулята гриб пересевают последовательно по схеме:

посев на скошенную агаризованную среду в пробирке > жидкая среда > колба > бутыль > инокулятор

Винокуляторе культуру выращивают в течение 21-26 ч. затем ее переводят а биореактор с питательной средой, содержащей кукурузную и соевую муку, кукурузный экстракт, свекловичный сахар, КН2РО4, СаСОз, NaCl и технический жир.

Среду стерилизуют в смесителе при 120 – 122 °С в течение 1 часа. Культивирование в биореакторе ведут до начала лизиса клеток и появления спор (определяют микроскопически). Температура культивирования 28 — 30 °С, давление воздуха в биореакторе (1 — 2) — 104 Па, расход воздуха 1,5 -2,0 л в минуту на 1 л культуральной жидкости. Выход рибофлавина около 1200 мг/л.

По окончании процесса ферментации культуральную жидкость вместе с мицелием передают в вакуум-выпарные аппараты (10), где ее нагревают до 80 °С с целью разрушения (термолиза) клеточных структур и одновременно ведут процесс концентрирования (упаривания) до содержания сухих веществ 30-40 %.

Полученный после упаривания концентрат в виде сиропообразной биомассы высушивают в распылительной сушилке до содержания влаги не более 8 %. В результате получают смесь биомассы мицелия Е. Ashbyii и сухих остатков питательной среды. Для получения однородного товарного продукта смесь размалывают и просеивают. На современных предприятиях концентрат гранулируют, поскольку порошкообразный продукт сильно пылит, что создает неудобства работы с ним и приводит к его потерям.

Кормовой концентрат витамина В2 представляет собой обработанную, высушенную, размолотую или гранулированную биомассу гриба-продуцента Е. ashbyii, содержащую не менее 15 мг рибофлавин на 1 г вещества. Помимо витамина В2, концентрат содержит 0,3- 0,5 % других витаминов группы В (В1, В6, В12, никотинамид), около 20% белковых веществ, а также полисахариды, липиды, минеральные соли.

Для животноводства можно получить кормовой рибофлавин как отход при производстве ацетона. Продуцентами витамина при этом являются ацетобутиловые бактерии.

Преимущество и рентабельность микробного синтеза витамина В2 иллюстрируется следующими цифрами: из 1 т моркови получают 1г витамина, из 1 т тресковой печени — 6 г, а из 1 т культуральной жидкости гриба E.ashbyii — 25 кг.

Производство витамина В12(цианкобаламина).Среди неполимерных биологически активных соединений витамин В12 имеет самое сложное строение. Его принятое химическое название α-(5.6-диметилбензимидазолил)-кобамидцианид. Это единственный витамин, в структуру которого входит кобальт.

Организм животных не способен к самостоятельному синтезу витамина В12. Этот витамин полностью отсутствует в растительных кормах в относительно небольших количествах содержится в кормах животного происхождения (рыбной и мясо-костной муке, молочных отходах). Среди растительного мира витамин В12 был обнаружен лишь у нескольких видов высших растений (горох, фасоль, побеги бамбука), причем его происхождение в этих растениях окончательно не установлено.

Цианокобаламин обладает высокой биологической активностью с широким спектром действия. В первую очередь, витамин B12 необходим для нормального кроветворения и созревания эритроцитов, он является эффективным противоанемическим препаратом. Цианкобаламин применяют для лечения злокачественного малокровия, железодефицитных анемий, апластических анемий и т.п. Этот препарат назначают также при лучевой болезни, заболеваниях печени, полиневритах, болезни Дауна, детском церебральном параличе и многих других заболеваниях.

Для медицинских целей субстанцию витамина B12 получают в виде кристаллического тёмно-красного порошка, содержащего не менее 99% основного вещества. Из этой субстанции готовят различные лекарственные формы, из которых наиболее широкое применение находят цианкобаламин в изотоническом растворе хлорида натрия для инъекций, и таблетки, содержащие цианкобаламин и фолиевую кислоту.

Важное значение витамин B12 имеет для животноводства. Его недостаток тормозит рост животных и приводит к серьезным заболеваниям. Цианкобаламин повышает усвояемость белка растительных кормов и является необходимым фактором полноценного питания животных.

Для животноводства отечественной промышленностью выпускается кормовой концентрат витамина В12 (КМВ-12), который по эффективности не уступает кристаллическому препарату, но является более дешевым и доступным для широкого использования в сельском хозяйстве.

Полный химический синтез витамина В12 был осуществлен через 25 лет после его открытия Р. Вудвордом и А. Эшенмозером с участием большой группы исследователей нескольких лабораторий университетов и научных центров США, Англии, Франции, Японии. Конечно, химический синтез витамина В12 имеет чисто теоретическое значение и в настоящее время он не может рассматриваться как вариант промышленного производства этого важного препарата.

Единственным способом получения витамина В12 в промышленном масштабе является его микробиологический синтез с использованием специальных штаммов микроорганизмов, способных активно продуцировать этот витамин.

В природе витамин В12 синтезируют многие микроорганизмы (например, метанобразующие и пропионовокислые бактерии), а также бактерии,осуществляющие термофильное метановое сбраживание сточных вод.

Активно продуцируют витамин В12 представители рода Pzopionibacterium, природные штаммы которых образуют 1,0 — 8,5 мг/л цианокобаломина, а полученный искусственный мутант P. shermanii M-82 способен накапливать витамин В12 до 58 мг/л.

Практический интерес для микробиологического синтеза этого витамина имеют представители актиномицетов и родственных микроорганизмов. Истинный витамин B12 в значительных количествах синтезируют Nocardia rugoza (до 18 мг/л), а также представители рода Miromonospora. Высокой кобаламинсинтезирующей активностью обладают метаногенные бактерии, например, Methanosarcina barkeri, M. vacuolita и отдельные штаммы галофильного вида Methanococcus halophilus (до 16 мг/л).

Цианкобаламин синтезируют строго анаэробные бактерии из рода клостридий. В значительных количествах образуют витамин B12 ацетогенные клостридии C.thermoaceticum, C.formicoaceticum и Acetobacter woodi, синтезирующие ацетат из СО2.

Известны активные продуценты витамина Bi2 переди псевдомонад. Некоторые штаммы Pseudomonas denitrificans нашли применение для промышленного получения цианкобаламина (фирма Merk, США). Интерес представляют также термофильные бациллы, а именно Bacillus eirculans и Bacillus stearothermophilus, которые растут при температурах, соответственно, 60 °С и 75 °С и за 18-24 культивирования без соблюдения стерильных условий дают высокие выходы витамина.

В нашей стране в качестве основного продуцента витамина В12, получаемого для медицинских целей, используют культуру Propionibacterium shermanii, а для нужд животноводства применяют смешанную культуру, содержащую термофильные метанобразующие бактерии.

На большинстве зарубежных предприятий витамин В12выпускают в чистом кристаллическом виде и применяют в животноводстве большей частью в виде компонентов премиксов.

Указанный способ включения витамина В12 в кормовые рационы применяется и в нашей стране.



Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производство Витаминов микробиологическим способом

Витамины — группа низкомолекулярных органических веществ, которые в очень низких концентрациях оказывают сильное и разнообразное биологическое действие. В природе источниками витаминов являются главным образом растения и микроорганизмы. Менахиноны и кобаламины синтезируются исключительно микроорганизмами. И хотя химический синтез в производстве большей части витаминов занимает ведущее положение, микробиологические методы также имеют большое практическое значение. Микробиологическим путем получают эргостерин, витамин В12, B, D. Кроме того, микроорганизмы используются как селективные окислители сорбита в сорбозу (при получении витамина С), а также для производства витаминных концентратов (витамина В2, каротиноидов). Перспективно микробиологическое получение биотина, используемого в рационе кур и свиней.

В мире существует 40 крупных промышленных производителей витаминов; 18 из них — в США, 8 — в Японии, 14 — в Западной Европе. Ведущее место в производстве витаминов занимает швейцарский концерн Hoffman La Roche, выпускающий 50 — 70 % всех витаминов от мирового европейского производства.

Получение витамина В12

Среди неполимерных соединений витамин В12 имеет самое сложное строение. Это α (5,6-диметилбензимидазол) — кобамидцианид или цианкобаламин. (рисунок 36)

В молекуле витамина В12различают: порфириноподобное, хромофорное или корриновое кольцо, связанное с атомом кобальта четырьмя координационными связями через атомы азота.

Верхним координационным лигандом кобальта в витамине В12 является цианогруппа. Ее место могут занимать другие неорганические или органические заместители, например, NO22- SO22-, ОН-, Н2О, СН3, аденозил; заместители определяют название производных витамина В12.

Шестая позиция кобальта занята нуклеотидным ядром (нижним лигандом кобальта), состоящим из азотистого основания, рибозы и
остатка фосфорной кислоты.

Нуклеотидное ядро связано с кобальтом через азот основания, а с корриновым кольцом — через аминопропаноловый мостик.

 
Рисунок 36 — Структура цианкобаламина.

В составе витамина В12 или цианкобаламина азотистое основание представлено 5,6-диметилбензимидазолом (5,6-ДМБ). Наличие 5,6-ДМБ определяет активность молекулы корриноидов (синоним названия витаминов группы В12) для высших животных. Вместо 5,6-ДМБ микроорганизмы могут включать в молекулу другие бензимидазольные и пуриновые основания. Нуклеотидное ядро вообще может отсутствовать, как в случае фактора В. Через 25 лет после открытия витамина B12 в 1972 г. в результате многолетних исследований был осуществлен полный химический синтез корриноидной структуры. Корриноид синтезирован в результате тридцати семи последовательных ступеней, но в силу сложности такого синтеза микробиологический метод остается пока единственным промышленным способом получения витамина В12.

Продуценты витамина B12.

В природе витамин В12 и родственные корриноидные соединения находят в клетках микроорганизмов, в тканях животных и некоторых высших растениях (горох, лотос, побеги бамбука, листья и стручки фасоли). Однако происхождение витамина В12 в высших растениях окончательно не установлено. Такие низшие эукариоты, как дрожжи и мицелиальные грибы, корриноиды, по-видимому, не образуют. Организм животных не способен к самостоятельному синтезу витамина. Среди прокариот способность к биосинтезу корриноидов широко распространена. Активно продуцируют витамин В12 представители рода Propionibacterium. Природные штаммы пропионовокислых бактерий образуют 1,0—8,5 мг/л корриноидов, но получен мутант P. shermanii M.- 82, с помощью которого получают до 58 мг/л витамина. В семействе Propionibacteriaceae есть и другие представители, способные к высокому накоплению витаминами В12 в клетках. Это, прежде всего, Eubacterium limosum (Batyribacterium retteerii). Как продуценты витамина практический интерес имеют многие представители актиномицетов и родственных микроорганизмов. Истинный витамин В12 в значительных количествах синтезирует Nocardia rugosa. Путем мутаций и отбора получен штамм N. rugosa, накапливающий до 18 мг/л витамина В12. Активные продуценты витамина обнаружены среди представителей рода Micromonospora: M. purpureae, M. echinospora, M. halophitica, M. fusca, M. chalceae.

Высокой кобаламинсинтезирующей активностью обладают метаногенные бактерии, например, Methanosarcina barkeri, M. vacuolata и отдельные штаммы галофильного вида Methanococcus halophilus. Последний организм синтезирует более 16 мг корриноидов на грамм биомассы. Столь высокого содержания корриноидов не отмечено ни у одного другого из изученных микроорганизмов. Причина высокого содержания корриноидов у метаногенных бактерий не установлена. Корриноиды синтезируют строго анаэробные бактерии из рода клостридий. У Clostridium tetanomorphum и Cl. Sticklandii аденозилкобаламин входит в состав ферментных систем, катализирующих специфические реакции изомеризации таких аминокислот, как глутаминовая, лизин и орнитин. В значительных количествах образуют витамин В12 ацетогенные клостридии Cl. thermoaceticum, Cl. formicoaceticum и Acetobacter woodi, синтезирующие ацетат из СО2. Известны активные продуценты витамина B12 у псевдомонад, среди которых лучше других изучен штамм Pseudomonas denitrificans MB-2436 — мутант, дающий на оптимизированной среде до 59 мг/л корриноидов. Корриноиды синтезируют Rhodopseudomonas, фототрофные пурпурные бактерии Rhodobacter sphericus , Rh. Capsulatus, Rhodospirillum rubrum, Chromatium vinosum и ряд других видов. Наряду с витамином В12 они образуют бескобальтовые корриноиды, роль которых для продуцентов не установлена. Значительные количества витамина В12образует цианобактерия Anabaena cylindrica, одноклеточные зеленые водоросли Chlorella pyrenoidosae и красные водоросли Rhodosorus marinus. Продуценты витамина B12 культивируют в средах, приготовленных на основе пищевого сырья: соевой муки, рыбной муки, мясного и кукурузного экстракта. В последние годы выявлены микроорганизмы, образующие высокие качества корриноидов при утилизации непищевого сырья.

Получение и применение витамина В12

Мировая продукция витамина В12 составляет 9 — 11 тыс. кг в год; из них 6,5 тыс кг используют на медицинские цели, а остальное — для животноводства. Производство витамина В12 основано главным образом на культивировании пропионовокислых бактерий (Великобритании, Венгрии), мезофильных и термофильных меганогенных бактерий (Венгрия), а также актиномицетов и родственных форм (Италия).

В СНГ в качестве продуцента витамина В12 используют Propionibacterium freudenreichii var. shermanii. Для получения витамина B12 бактерии культивируют периодическим методом в анаэробных условиях в среде, содержащей кукурузный экстракт, глюкозу, соли кобальта и сульфат аммония. Образующиеся в процессе брожения кислоты нейтрализуют раствором щелочи, который непрерывно поступает в ферментер. Через 72 ч. в среду вносят предшественник — 5,6-ДМБ. Без искусственного введения 5,6-ДМБ бактерии синтезируют фактор В и псевдовитамин В12 (азотистым основанием служит аденин), не имеющие клинического значения. Ферментацию заканчивают через 72 ч. Витамин B12 сохраняется в клетках бактерий. Поэтому после окончания брожения биомассу сепарируют и экстрагируют из нее витамин водой, подкисленной до рН 4,5 — 5,0 при 85 — 90°С в течение 60 мин. с добавлением в качестве стабилизатора 0,25 % NaNO2.

Водный раствор витамина В12охлаждают, доводят рН до 6,8 — 7,0 50 %-ным раствором NaOH. К раствору добавляют Al2(SO4)3* 18Н2О и безводный FeCl3 для коагуляции белков и фильтруют через фильтр — пресс. Очистку раствора проводят на ионообменной смоле СГ-1,с которой кобаламины элюируют раствором аммиака. Далее проводят дополнительную очистку водного раствора витамина органическими растворителями, упаривание и очистку на колонке с А12О3, с окиси алюминия кобаламины элюируют водным ацетоном. К водно-ацетоновому раствору витамина добавляют ацетон и выдерживают 24 — 48 ч. при 3 — 4°С. Выпадающие кристаллы витамина отфильтровывают, промывают сухим ацетоном и серным эфиром и сушат в вакуум-эксикаторе над Р2О5. Для предотвращения разложения В12 все операции необходимо проводить в сильно затемненных помещениях или при красном свете. Таким образом можно получить не только смесь CN- и оксикобаламинов, но и коферментную форму, которая обладает высоким терапевтическим эффектом.

Промышленность выпускает различные формы лечебных препаратов кобаламинов: ампулы со стерильным раствором CN – B12, приготовленного на 0,9 % растворе NaCl, таблетки CN — В12 и в смеси с фолиевой кислотой, таблетки, (муковита), содержащие CN — B12 и мукопротеид. Лечебные препараты в ампулах: камполон, антианемин и гепавит содержат водный экстракт печени крупного рогатого скота. Перспективны исследования по мутагенезу пропионовокислых бактерий как один из способов повышения продуктивности штамма, а также проверки и внедрения в производственные условия других продуцентов, растущих на дешевом непищевом сырье.

Промышленное получение витамина В12 с помощью пропионовокислых бактерий позволяет полностью удовлетворить потребности медицины. Для обогащения кисломолочных продуктов витамином В12 используют пропионовокислые бактерии как в чистом виде, так и в виде концентрата, приготовленного на молочной сыворотке. Для нужд животноводства витамин В12получают, используя смешанную культуру, содержащую термофильные метанообразующие бактерии.

Установлено образование корриноидов не только в смешанной, но и в чистой культуре метанобразующих бактерий Methanosarcina barkeri, Methanobacterium formicum при росте в присутствии Н2 и СО2. Содержание корриноидов у метанобразующих бактерий составляет 1,0 — 6,5 мг/г сухой биомассы. С помощью смешанной культуры метанобразующих бактерий разработан метод получения кормового препарата витамина В12 — КМБ12. Субстратом для метанового брожения служит ацетоно-бутиловая и спиртовая барда. Ацетоно-бутиловую барду получают в результате удаления растворителей из культуральной жидкости Clostridium acetobutylicum , сбраживающей паточно-мучные заторы. Для метанового брожения используют декантат барды, содержащий 2,0 — 2,5 % сухих веществ. К декантированной барде добавляют 4 г/м3 СоС12 и 0,5 % метанола как стимуляторов синтеза кобаламинов. В качестве биостимуляторов вносят также карбамид и диаммонийфосфат, 5,6-ДМБ не вносят, поскольку CN= B12 и фактор III, обладающие биологической активностью, составляют до 80 % от суммы всех корриноидов.

Исходная барда имеет температуру около 100°С и практически стерильна. Перед поступлением в ферментеры барда охлаждается до 55 — 57°С. В качестве исходной культуры используют смешанную культуру метанообразующих бактерий, осуществляющих термофильное метановое брожение сточных вод. Получение концентрата витамина В12 включает следующие технологические стадии: непрерывное сбраживание барды комплексом бактерий, сгущение метановой бражки и сушку сгущенной массы на распылительной сушилке. Брожение проводят в железобетонных ферментерах непрерывным способом в течение года.

Важное условие нормального процесса брожения — контроль уровня жирных кислот и аммонийного азота. Витамин В12 неустойчив при тепловой обработке, особенно в щелочной среде. Поэтому перед выпариванием к метановой бражке добавляют НСl до оптимального значения рН 5,0 — 5,3 и сульфит (оптимальное содержание 0,07 — 0,1 %). Перед поступлением на установку выпаривания метановая бражка дегазируется путем нагревания до 90 — 95°С при атмосферном давлении. Бражку сгущают до 20% сухих веществ в четырехкорпусных выпарных аппаратах. Сгущенная метановая бражка высушивается на распылительной сушилке.

Сухой концентрат КМБ-12, помимо витамина В12 (100 мг/кг препарата), содержит ряд других ростстимулирующих веществ. Особенно хорошие результаты в животноводстве получают при сочетании витамина В12с малыми дозами антибиотиков, в частности, с биомицином.

Получение витамина В2

Рибофлавин (витамин В2, 7,8-диметил-10-(1-D-рибитил-изоаллоксазин) выделен в кристаллическом виде в 1933 г. В основе строения флавинов, к которым относится рибофлавин, лежит гетероциклическая изоаллоксазиновая система, представленная тремя конденсированными циклами: ароматическим (А), пиразиновым (В) и пиримидиновым (С). К азоту пиразинового кольца присоединен спирт рибит.

Рибофлавин функционирует в коэнзимных формах, представляющих собой его фосфорные эфиры: флавиномононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). В последние десятилетия открыты новые биокаталитические факторы изоаллоксазиновой структуры, функциональные группы которых представлены модифицированными молекулами РФ, ФМН, ФАД. Новые природные аналоги РФ входят в состав простетических групп многих флавопротеидов.

Дата добавления: 2014-01-04; Просмотров: 3634; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник