Гетероциклы входящие в состав витаминов

Гетероциклические соединения (гетероциклы) — органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, пентазол.

Реакционная способность[править | править код]

Особенности реакционной способности гетероциклических соединений по сравнению с их карбоциклическими аналогами обуславливаются именно такими гетерозаместителями. В качестве гетероатомов чаще всего выступают элементы второго периода (N, O) и S, реже — Se, P, Si и др. элементы. Как и в случае карбоциклических соединений, наиболее специфические свойства гетероциклических соединений проявляют ароматические гетероциклические соединения (гетероароматические соединения). В отличие от атомов углерода карбоциклических ароматических соединений, гетероатомы могут отдавать в ароматическую систему не только один (гетероатомы пиридинового типа), но и два (гетероатомы пиррольного типа) электрона. Гетероатомы пиррольного типа обычно входят в состав пятичленных циклов (пиррол, фуран, тиофен). В одном гетероцикле могут сочетаться оба типа гетероатомов (имидазол, оксазол). Особенности реакционной способности гетероароматических соединений определяются распределением электронной плотности в цикле, которая, в свою очередь, зависит от типов гетероатомов и их электроотрицательности.

Нуклеофильность[править | править код]

Так, для пятичленных гетероциклов с одним гетероатомом (пиррольный тип), ароматический секстет электронов распределяется по пяти атомам цикла так, что ведёт к высокой нуклеофильности этих соединений. Для них характерны реакции электрофильного замещения, они весьма легко протонируются по пиридиновому азоту (предпочтительно, см. далее) или углероду цикла, галогенируются и сульфируются в мягких условиях. Реакционная способность при электрофильном замещении убывает в ряду пиррол > фуран > селенофен > тиофен > бензол.

Введение гетероатомов пиридинового типа в пятичленные гетероциклы ведёт к снижению электронной плотности, нуклеофильности, и, соответственно, реакционной способности в реакциях электрофильного замещения, то есть эффект аналогичен влиянию электроноакцепторных заместителей для производных бензола. Азолы реагируют с электрофилами подобно пирролам с одним или несколькими электроноакцепторными заместителями в кольце, а для оксазолов и тиазолов становится возможным лишь при наличии активирующих заместителей с +M-эффектом (амино- и гидроксигруппы).

Для шестичленных гетероциклов (пиридиновый тип) пониженная по сравнению с бензолом электронная плотность ведёт с пониженной нуклеофильности этих соединений: реакции электрофильного замещения идут в жёстких условиях. Так, пиридин сульфируется олеумом при 220—270 °C.

Нуклеофильность гетероатомов[править | править код]

Для азотсодержащих гетероциклических соединений с азотом пиридинового типа п-электронная плотность максимальна именно на атоме азота. В качестве иллюстрации можно привести расчётную п-электронную плотность для пиридина:

Положение атомаЭлектронная плотность
1 (N)1.43
2 (α)0.84
3 (β)1.01
4 (γ)0.87

Соответственно, атаки электрофилов в этом случае направляются на пиридиновый атом азота. В качестве электрофилов могут выступать разнообразные алкилирующие и ацилирующие агенты (реакция кватернизиции с образованием соответствующих четвертичных солей) и пероксикислоты (с образованием N-оксидов).

Атом азота пиррольного типа значительно менее нуклеофилен — алкилирование N-замещенных имидазолов идёт преимущественно по азоту пиридинового типа, однако, при депротонировании незамещённого пиррольного азота направление замещения обращается. Так, 4-нитроимидазол при метилировании в нейтральных условиях даёт в основном 1-метил-5-нитроимидазол, а в щелочных растворах (где субстратом является его депротонированная форма) главным продуктом реакции оказывается 1-метил-4-нитроимидазол.

Такое повышение нуклеофильности азота пиррольного типа при депротонировании типично для всех гетероароматических соединений, однако направление атаки электрофила зависит от степени диссоциации образующегося аниона: если индолил- и пирролилмагнийгалогениды подвергаются электрофильной атаке преимущественно по углероду, то соответствующие соли щелочных металлов реагируют в основном по атому азота. Подтверждением влияния диссоциации комплекса N-анион — металл на направление реакции является обращения направления электрофильной атаки при реакции индолилмагнийгалогенидов с метилйодидом в ГМФТА вследствие промотируемой растворителем диссоциации магниевого комплекса.

Электрофильность[править | править код]

Электрофильность гетероароматических соединений растёт при падении п-электронной плотности, то есть при увеличении числа гетероатомов и, при их равном числе, выше для шестичленных, по сравнению с пятичленными, гетероциклами. Так, для пирролов и индолов реакции нуклеофильного замещения атипичны, пиридин и бензимидазол аминируются амидом натрия, а 1,3,5-триазин быстро гидролизуется до формиата аммония уже в водном растворе.

Реакционная способность заместителей и боковых цепей[править | править код]

Реакционная способность неароматических гетероциклических близка к таковой их ациклических аналогов с поправкой на стерические эффекты.

В случае гетероароматических соединений на реакционную способность боковых цепей существенно влияют мезомерные эффекты. Кислотность метиленовых водородов в 2- и 4-замещённых пиридинах существенно повышена: так, альдольная конденсация 2-метилпиридина (α-пиколина) с формальдегидом с образованием 2-этоксиэтил-2-пиридина с последующей его дегидратацией служит промышленным методом синтеза 2-винилпиридина.

Номенклатура[править | править код]

В химии гетероциклические соединения в силу исторических причин широко применяются тривиальные названия; так, например, при именовании пяти- и шестичленных соединений, содержащих 1 или 2 гетероатома N, O или S в подавляющем большинстве случаев используются тривиальные названия.

Систематическая номенклатура гетероциклических соединений строится по правилам, предложенным Ганчем и Видманом.

Основа названия присваивается гетероциклу в зависимости от размера цикла, а также от содержащихся в нём гетероатомов: для азотсодержащих гетероциклов часто применяют отдельный набор основ. Для насыщенных и максимально ненасыщенных гетероциклов также применяют различные наборы основ. Также иногда применяются специальные основы для указания на частичную ненасыщенность гетероцикла.

Насыщенные

  • иран (для трёхчленного цикла),
  • етан (для четырёхчленного цикла),
  • олан (для пятичленного цикла),
  • ан (для шестичленного цикла),
  • епан (для семичленного цикла),
  • окан (для восьмичленного цикла),
  • онан (для девятичленного цикла),
  • екан (для десятичленного цикла),

Ненасыщенные

  • ирен (для трёхчленного цикла),
  • ет (для четырёхчленного цикла),
  • ол (для пятичленного цикла),
  • ин (для шестичленного цикла),
  • епин (для семичленного цикла),
  • оцин (для восьмичленного цикла),
  • онин (для девятичленного цикла),
  • ецин (для десятичленного цикла),

содержащие азот

Насыщенные

  • еридин (для трёхчленного цикла),
  • етидин (для четырёхчленного цикла),
  • оллидин (для пятичленного цикла),
  • инан (для шестичленного цикла),
  • епан (для семичленного цикла),
  • окан (для восьмичленного цикла),
  • онан (для девятичленного цикла),
  • екан (для десятичленного цикла),

Ненасыщенные

  • ирин (для трёхчленного цикла),
  • ет (для четырёхчленного цикла),
  • ол (для пятичленного цикла),
  • ин (для шестичленного цикла),
  • епин (для семичленного цикла),
  • оцин (для восьмичленного цикла),
  • онин (для девятичленного цикла),
  • ецин (для десятичленного цикла),

Биологическое значение[править | править код]

Гетероциклические соединения широко распространены в живой природе и имеют важное значение в химии природных соединений и биохимии. Функции, выполняемые этими соединениями весьма широки — от структурообразующих полимеров (производные целлюлозы и других циклических полисахаридов) до коферментов и алкалоидов.

Производство и применение[править | править код]

Некоторые гетероциклические соединения получают из каменноугольной смолы (пиридин, хинолин, акридин и пр.) и при переработке растительного сырья (фурфурол). Многие природные и синтетические гетероциклические соединения — ценные красители (индиго), лекарственные вещества (хинин, морфин, акрихин, пирамидон). Гетероциклические соединения используют в производстве пластмасс, как ускорители вулканизации каучука, в кинофотопромышленности.

Ссылки[править | править код]

  • Revision of the extended Hantzsch-Widman system of nomenclature for heteromonocycles (Recommendations 1982) // IUPAC

См. также[править | править код]

  • Трёхчленные гетероциклы
  • Четырёхчленные гетероциклы
  • Пятичленные гетероциклы
  • Шестичленные гетероциклы
  • Семичленные гетероциклы

Источник

     В наше время большинство образованных людей хотя бы в общих чертах имеют представления о белках, жирах и углеводах и о роли этой триады веществ в процессах жизнедеятельности. Меньшая осведомленность проявляется в отношении так называемых гетероциклических соединений, или гетероциклов, значение которых в химии живого, однако, ничуть не меньше, а разнообразие проявлений даже заметно шире, чем у белков, жиров и углеводов. Гетероциклы, а конкретнее, некоторые производные пуринов и пиримидинов, играют фундаментальную роль в передаче наследственных признаков. Неудивительно, что в школьных учебниках по органической химии имеются упоминания, как об этих соединениях, так и о строении и функциях нуклеиновых кислот. Вместе с тем на основании предельно сжатой информации учащимся нелегко создать целостное представление о причинах, по которым Природа выбрала для реализации этих целей именно гетероциклы. Необходимостью восполнить этот пробел и продиктована настоящая статья. В ней нашли отражение преимущественно общие и биохимические аспекты химии гетероциклов. Механизмы функционирования нуклеиновых кислот обсуждаются во многих других книгах.

ТИПЫ ГЕТЕРОЦИКЛОВ И ГЕТЕРОАТОМОВ

     Если, соблюдая правила валентности, в молекуле циклогексана любой из атомов углерода заменить на азот, получится один из простейших гетероциклов — пиперидин. Аналогично из бензола можно «сконструировать» пиридин, а из циклогексена — 1,2,3,6-тетрагидропиридин.

     Известно огромное множество гетероциклических соединений. Они различаются размером и числом колец, количеством и типом гетероатомов, их взаимным расположением и т.д. В основе самой общей классификации гетероциклов лежат углеводороды. Например, циклические углеводороды подразделяют на циклопарафины (их представитель — циклогексан), циклоолефины (например, циклогексен) и ароматические углеводороды, главный представитель которых — бензол. Соответственно этому и гетероциклы делятся в общем виде на гетероциклопарафины (пиперидин), гетероциклоолефины (1,2,3,6-тетрагидропиридин) и гетероароматические соединения (пиридин и др.). Дальнейшая классификация базируется главным образом на типе гетероатома.

     Наиболее специфическую и важную в практическом отношении группу гетероциклов составляют гетероароматические соединения. В них встречаются два главных типа гетероатома, дающих начало соответственно двум типам гетероароматических структур. Гетероатом первого типа, условно называемый пиридиновым, встречается в самом пиридине и его аналогах с атомами кислорода или серы — катионах пирилия и тиапирилия. Он вносит в ароматический ансамбль один p-электрон и сам остается двоесвязанным. Гетероатом второго типа обычно входит в состав пятичленных гетероциклов, например, пиррола, фурана или тиофена. Он вносит в ароматический секстет два p-электрона и сам образует только одинарные связи. Такой гетероатом называется пиррольным.

     В гетерокольце может быть и несколько гетероатомов как одного типа (пиримидин), так и разных типов (имидазол). Известны циклы, состоящие только из гетероатомов, как, например, боразин, называемый за свою устойчивость «неорганическим бензолом», или менее устойчивый пентазол. Большая группа гетероциклов состоит из двух и более колец, которые могут быть соединены простой связью, как в 2,2′-дипиридиле или сочленены общим ребром, как в пурине.

     В природе наиболее распространены пяти- и шестичленные гетероциклы; они чаще всего используются и в научных исследованиях. Однако в последнее время химики все больше внимания уделяют макрогетероциклам. Так, синтезированы восемнадцатичленный аналог пиридина аза[18]аннулен и семнадцатичленный аналог пиррола аза[17]аннулен. Важнейшим природным макрогетероциклом является порфин, молекула которого состоит из четырех пиррольных колец, соединенных между собой метиновыми мостиками -СН=.

ФИЗИКО-ХИМИЧЕСКАЯ СПЕЦИФИКА ГЕТЕРОЦИКЛОВ

     Во многих химических процессах, совершающихся в живых клетках, в той или иной форме участвуют различные гетероциклические соединения. Почему именно гетероциклы? — возникает вполне резонный вопрос. Чтобы ответить на него, надо хотя бы в общих чертах рассказать об основных физико-химических свойствах гетероциклов.

Первое, что следует отметить, это чрезвычайно широкий диапазон реакционной способности гетероциклов. В зависимости от рН среды они образуют анионы или катионы, одни охотно реагируют с положительно заряженными реагентами (электрофилами), другие с отрицательно заряженными (нуклеофилами); одни легко восстанавливаются, но трудно окисляются, другие, напротив, легко окисляются, но трудно восстанавливаются. Имеются и амфотерные гетероциклические системы, проявляющие одновременно все перечисленные свойства. Важное биохимическое значение имеет способность многих гетероциклов образовывать прочные комплексы с ионами металлов. Все эти проявления реакционной способности так или иначе связаны с распределением электронной плотности в гетероциклических молекулах.

     Рассмотрим в качестве примера пиридин. Специфика пиридинового атома азота состоит в том, что он оттягивает на себя часть электронного облака молекулы. В результате атомы углерода, прежде всего находящиеся в орто- и пара-положениях, приобретают частичный положительный заряд. Дефицит электронной плотности на углеродном остове — характерное свойство всех гетероциклов, содержащих гетероатомы пиридинового типа. Их важнейшая особенность — легкость взаимодействия с отрицательно заряженными реагентами — нуклеофилами. Типичный пример — реакция пиридина с амидом натрия, в результате чего образуется 2-аминопиридин.

Реакции замещения водорода при действии положительно заряженных реагентов для таких гетероциклов протекают очень трудно или не идут совсем. Однако электрофилы легко присоединяются к пиридиновому атому азота за счет его неподеленной пары электронов. Например, с кислотами и алкилгалогенидами пиридин образует соответственно соли пиридиния и N-алкилпиридиния. Пиридин выступает в подобных реакциях фактически как основание.

     Известно, что введение в органическую молекулу электроноакцепторных групп вызывает понижение энергии молекулярных орбиталей. В результате соединения труднее отдают электроны (плохо окисляются), но зато легче присоединяют их (охотнее восстанавливаются). Гетероатом пиридинового типа является акцептором электронов, из чего следует, что соответствующие гетероциклы должны быть склонны к легкому восстановлению. Это действительно так. Например, хлорид 1-бензил-3-карбамоилпиридиния восстанавливается до 1-бензил-3-карбамоил-1,4-дигидропиридина, который может быть окислен вновь до исходной соли .

Эта обратимая реакция лежит в основе действия множества природных катализаторов — ферментов, прежде всего тех, которые обеспечивают дыхательный процесс и аккумулирование энергии . Пожалуй, самое известное превращение этого типа — окисление этилового спирта до ацетальдегида или обратное восстановление последнего до этанола.

     Противоположная ситуация имеет место в случае пиррола и других гетероциклов с гетероатомом пиррольного типа. В молекулах этих соединений на пять кольцевых атомов формально приходится шесть p-электронов. В результате кольцевые углеродные атомы имеют избыточный отрицательный заряд. Для таких гетероциклов уже не характерны реакции с нуклеофилами, но их взаимодействие с электрофилами протекает очень легко. Например, пиррол бромируется на холоду сразу до тетрабромпиррола, и эту реакцию трудно остановить на стадии монозамещения.

Гетероатом пиррольного типа практически лишен основных свойств. Напротив, для пиррола и других NH-гетероциклов характерно проявление кислотности. Так, при действии оснований они образуют N-анионы. Последние легко реагируют с различными электрофилами, что используется для получения разнообразных N-производных, например, 1-метилпиррола . Молекулярные орбитали в подобных гетероциклах имеют высокую энергию, поэтому они, в противоположность пиридину и его аналогам, трудно восстанавливаются, но легко окисляются. Так, контролируемым окислением пиррола и его N-замещенных можно получать полипирролы, обладающие замечательными электрофизическими характеристиками.

     Соединения, содержащие одновременно гетероатомы пиррольного и пиридинового типа, как и следовало ожидать, проявляют амфотерные свойства. Показателен в этом отношении имидазол.

Этот гетероцикл — один из самых распространенных, можно сказать ключевых, в живых организмах. Он входит в состав пуриновых оснований, витамина В12 , многих ферментов. Биологические функции имидазола связаны с исключительным разнообразием и гибкостью его физико-химических свойств. Так, отщепляя протон, он превращается в анион, а присоединяя протон, — в катион имидазолия. Кислотно-основные свойства имидазола таковы, что в организме при рН=7 около половины его молекул находятся в форме катиона, другая половина — в виде нейтральных частиц. Еще одна особенность имидазола состоит в склонности к образованию межмолекулярных водородных связей как с себе подобными молекулами, так и с водой, аминокислотами, другими биомолекулами.

Водородные связи относятся к так называемым невалентным взаимодействиям. Хотя энергия одного невалентного взаимодействия на 1 — 2 порядка ниже энергии обычных ковалентных связей, именно невалентные взаимодействия и, прежде всего, водородные связи обеспечивают гибкость, быстроту и разнообразие биохимических процессов. Это объясняется множественностью межмолекулярных взаимодействий, которые, складываясь, становятся в химии живого определяющим фактором. Гетероциклические соединения с их полярностью, наличием неподеленных электронных пар, гетроатомов и связей N-H обладают уникальной способностью к невалентным взаимодействиям. В этой связи следует напомнить, что образование множества водородных связей между комплементарными парами оснований аденин-тимин и гуанин-цитозин обеспечивает достаточно прочное сцепление полинуклеотидных спиралей в молекулах двунитевых ДНК.

ГЕТЕРОЦИКЛЫ И МЕТАЛЛЫ

     Известно, что для нормального развития живым организмам требуются микроколичества различных металлов. К числу «металлов жизни», помимо широко распространенных натрия, калия, магния, кальция, железа, цинка, относятся и более экзотичные — молибден, кобальт, хром и некоторые другие. Все они находятся в организме в виде катионов, связанных координационными связями с лигандами. Роль последних играют прежде всего аминокислоты и азотистые гетероциклы. Можно сказать, что способность образовывать прочные комплексы с металлами как бы запрограммирована в самой структуре гетероциклов.

     Жестко ориентированная в пространстве неподеленная электронная пара пиридинового атома азота идеально приспособлена для координации с любыми металлическими ионами. Так, пиридин образует линейный комплекс с ионом серебра, тетраэдрический — с хлоридом алюминия, плоскоквадратный — с хлоридом меди или дианионный комплекс — с хлоридом кобальта.

Молекула пиридина может предоставить для координации с ионом металла лишь одну электронную пару. Такие лиганды называются монодентатными. Пожалуй, самым важным гетероциклическим монодентатным лигандом, с точки зрения биологии, является имидазол. Большое внимание привлекают полидентатные лиганды, способные предоставлять для координации сразу несколько электронных пар. Типичный пример бидентатного лиганда — 2,2′-дипиридил. Это соединение образует устойчивые комплексы с рядом металлов, в частности с ионом Fe2 +. В последние годы в связи с проблемой создания искусственных фотосинтетических систем широко исследуется рутениевый комплекс 2,2′-дипиридила, катализирующий фоторазложение воды на водород и кислород.

     Важнейшим природным тетрадентатным лигандом является порфиновая система. В дианионе порфина внутрь полости цикла направлены оси всех четырех неподеленных электронных пар. В эту полость легко входят ионы многих металлов, которые прочно закрепляются в ней, образуя координационные связи с атомами азота.

Порфиновая система с включенным в нее ионом магния входит в состав зеленого пигмента растений хлорофилла, а порфиновая система, связанная с ионом железа, в состав гемина — красного пигмента крови. Похожий комплекс с ионом двухвалентного кобальта является структурным фрагментом витамина B12 .

ГЕТЕРОЦИКЛЫ: ФЕРМЕНТЫ И ВИТАМИНЫ

     Как правило, ферменты представляют собой белки с большой молекулярной массой. В их состав часто входят несколько полипептидных цепей, переплетенных друг с другом за счет невалентных взаимодействий. Благодаря такой надмолекулярной организации молекула фермента приобретает объемную форму, на поверхности которой имеются всевозможные неровности: углубления, ниши, щели. В одной из таких неровностей расположена активная зона фермента, в которую, как ключ в замок, входит реагирующая молекула. Как и каждый хороший замок, фермент откликается только на свой «ключ», то есть на молекулы строго определенного вещества — субстрата. Поэтому каждый тип превращения в организме требует участия своего специфического фермента.

     В состав активных центров многих ферментов входят остатки гетероциклических соединений, в частности пиридина и имидазола. Имидазольный фрагмент входит в состав аминокислоты гистидина. Наряду с индолсодержащей аминокислотой триптофаном, это одна из наиболее важных природных аминокислот гетероциклического ряда.

Благодаря уникальным кислотно-основным свойствам, имидазольное кольцо может катализировать присоединение нуклеофилов к карбонильной группе. Эта реакция — одна из важнейших как в лабораторной практике, так и в живой природе.

     Наряду с чисто белковыми ферментами, существует множество ферментов, в состав которых входит и небелковая часть, называемая коферментом. Большинство последних — производные азотистых гетероциклов: пиридина, пиримидина, тиазола и др. Многие коферменты не могут быть синтезированы в организмах человека и животных, поэтому они должны поступать с пищей. Готовые коферменты или их близкие химические предшественники называются витаминами.

ГЕТЕРОЦИКЛЫ И МЕДИЦИНА

     Логично ожидать, что при такой значимости гетероциклов в химии живого они должны были найти применение и в медицине. Это действительно так. По данным на начало 90-х годов, из 1070 наиболее широко применяемых синтетических лекарственных препаратов 661 (62 %) относились к гетероциклам.

     Еще задолго до развития фармацевтической химии люди лечили болезни, используя гетероциклические соединения из природной аптеки: листья, плоды и кору деревьев, корни и стебли трав, вытяжки из насекомых и т.д. Вероятно, ни о каком другом природном соединении не сложено столько историй, как о хинине. Хинин — один из представителей многочисленного семейства алкалоидов — азотсодержащих органических соединений преимущественно растительного происхождения. Почти все алкалоиды являются производными азотистых гетероциклов. Хинин сыграл историческую роль в борьбе с малярией. Примером другого алкалоида является папаверин, который используют в медицине как спазмолитическое и сосудорасширяющее средство.

     Мало кто из нас обходится в течение дня без чашки чая или кофе, Их бодрящий эффект вызывают присутствующие в листьях чая и в плодах кофе алкалоиды пуриновой группы — кофеин, теобромин и теофиллин. Все они являются стимуляторами центральной нервной системы, повышают жизнедеятельность тканей, усиливают общий обмен веществ. Теофиллин и теобромин применяются в медицине, как сосудорасширяющие средства, а также диуретики. Разумеется, их готовят сейчас синтетическим путем.

Двадцатый век называют иногда веком Великой лекарственной революции. Одним из ее ярких символов, безусловно, следует считать b-лактамные антибиотики — пенициллин и цефалоспорин, спасшие миллионы человеческих жизней. Оба они также являются производными гетероциклических соединений.

     В последние годы наметился прорыв в решении такой сложной задачи, как создание эффективных противовирусных препаратов. В 1988 году американским ученым Г. Эллион и Дж. Хитчингсу была присуждена Нобелевская премия за создание ацикловира — первого высокоэффективного препарата против герпесных вирусных инфекций. Несколько ранее те же ученые получили и внедрили в клиническую практику азидотимидин, применяемый как средство против СПИДа. В связи с тем, что действие ацикловира и азидотимидина направлено на генетический аппарат вирусов, неудивительно, что оба препарата относятся к пуринам и пиримидинам.

     Успехи в борьбе с инфекционными заболеваниями отодвинули их, как основную причину смертности, на третье место. В то же время на два первых места вышли сердечно-сосудистые и раковые заболевания. Вместе с расстройствами нервной системы, распространенными также чрезвычайно широко, их часто называют болезнями ХХ века. Современная революция в психофармакологии началась еще в 50-е годы с производных одного из гетероциклов — фенотиазина. Классическим и, пожалуй, самым ярким их представителем является хлорпромазин (аминазин). Только в США применение хлорпромазина за короткое время позволило высвободить несколько миллионов больничных коек, занятых людьми с различными психическими расстройствами. В 60-е годы в клиническую практику была введена другая группа успокаивающих препаратов, также относящаяся к гетероциклам. Речь идет о производных 1,4-бензодиазепина. Наиболее известные из них — диазепам, нитразепам, феназепам и др. За короткое время по количеству потребляемых таблеток они стали одними из самых распространенных в мире лекарств.

     Точно так же в ряду сердечно-сосудистых препаратов в последние годы на первых местах обосновались производные 1,4-дигидропиридина, например, фенигидин. Распространенным противораковым средством является 5-фторурацил.

ЗАКЛЮЧЕНИЕ

     Разумеется, рассказанное — лишь небольшая часть того, чем интересны гетероциклы. Следовало бы также упомянуть о выдающейся роли гетероциклов в дыхательном процессе и консервации энергии, фотосинтезе, производстве пестицидов, красителей, термостойких полимеров, аналитических реагентов и многих других практически важных материалов. В последние годы с гетероциклами тесно связана новая бурно прогрессирующая область науки — супрамолекулярная химия, исследующая закономерности самоорганизации молекул и их распознавания друг другом.

Источник