Обмен белков жиров углеводов и витаминов

Обмен белков жиров углеводов и витаминов thumbnail

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

1. Поступив в организм, молекулы пищевых веществ участвуют во множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества либо используются в качестве сырья для синтеза новых клеток, либо окисляются, доставляя организму энергию. Часть этой энергии необходима для непрерывного построения новых тканевых компонентов. Другая часть расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции клеточных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ принято разделять на анаболические и катаболические. Анаболизмом (ассимиляцией) называют химические процессы, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом (диссимиляцией) называют расщепление этих сложных веществ, приводящее к освобождению энергии, при этом происходит разрушение протоплазмы и расходование ее веществ.

Сущность обмена веществ заключается:

1) в поступлении в организм из внешней среды различных питательных веществ;

2) в усвоении и использовании их в процессе жизнедеятельности как источников энергии и материала для построения тканей;

3) в выделении образующихся продуктов обмена во внешнюю среду.

Специфические функции обмена веществ:

1) извлечение энергии из окружающей среды в форме химической энергии органических веществ;

2) превращение экзогенных веществ в строительные блоки, т.е. предшественники макромолекулярных компонентов клетки;

3) сборка белков, нуклеиновых кислот и других клеточных компонентов из этих строительных блоков;

4) синтез и разрушение тех биомолекул, которые необходимы для выполнения различных специфических функций данной клетки.

2. Обмен белков — это совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки составляют основу всех клеточных структур и являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека в среднем составляет 100-120 г (при трате энергии 3000 ккал/сутки).

В распоряжении организма должны быть все аминокислоты (20) з определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей. Это т.н. незаменимые аминокислоты. Другие аминокислоты могут быть синтезированы в организме и называются заменимыми (12: гликокол, аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин, гистидин и др.). Белки делят на биологически полноценные (с полным набором всех восьми незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Основными этапами обмена белков являются:

1) ферментативное расщепление белков пищи до аминокислот и всасывание последних;

2) превращение аминокислот;

3) биосинтез белков;

4) расщепление белков;

5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки тонкого кишечника, аминокислоты по воротной вене поступают в печень, где они либо немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Белки тела непрерывно и быстро расщепляются и синтезируются заново. Период обновления общего белка в организме составляет у человека 80 дней. Если пища содержит больше аминокислот, чем это необходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH2, т.е. производят дезаминирование.

Другие ферменты, соединяя отщепленные аминогруппы с СО2, образуют из них мочевину, которая переносится с кровью в почки и выделяется с мочой. Углеродные цепи некоторых аминокислот, называемых «глюкогенными», могут превращаться в глюкозу или гликоген; углеродные цепи других аминокислот – «кетогенных» дают кетоновые тела. Белки практически не откладываются в депо, поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, — не резервные, а ферменты и структурные белки клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившегo в организм с пищей и выделенного из него. В норме у взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма (азотистое равновесие). Когда поступление азота превышает его выделение, говорят о положительном азотистом балансе, при этом происходит задержка азота в организме. Наблюдается в период роста организма, во время беременности, при выздоровлении. Когда количество выведенного из организма азота превышает количество поступившего, говорят об отрицательном азотистом балансе. Он отмечается при значительном снижении содержания белка в пище (белковом голодании).

Качественные изменения белкового обмена приводят к изменениям в структуре клеток и тканей — белковым дистрофиям — диспротеинозам.

3. Обмен жиров — это совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов, составляющих 10-30% массы тела. Основная масса жиров — это нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека составляет 70-100 г. Биологическая ценность жиров определяется тем, что некоторые ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), необходимые для жизнедеятельности, являются незаменимыми и не могут образовываться в организме человека из других жирных кислот, поэтому они должны обязательно поступать с пищей (растительные и животные жиры). Суточная потребность в незаменимых жирных кислотах для взрослого человека составляет 10-12 г.

Основными этапами жирового обмена являются:

1) ферментативное расщепление жиров пищи в желудочно-кишечном тракте до глицерина и жирных кислот и всасывание последних в тонком кишечнике;

2) образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;

3) гидролиз этих соединений на поверхности клеточных мембран ферментом липопротеидлипазой, всасывание жирных кислот и глицерина в клетки, где они используются для синтеза собственных липидов клеток органов и тканей. После синтеза липиды могут подвергаться окислению, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, поступает некоторое количество липоидов (жироподобных веществ) — фосфатидов и стеринов. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток. Фосфатидами особенно богата нервная ткань. Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит своеобразным изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови 3,11-6,47 ммоль/л.

Патология жирового обмена проявляется чаще всего в общем увеличении нейтрального жира в организме, называемом общим ожирением (тучностью). Причиной этого могут быть нейроэндокринные расстройства, а также избыточное питание, алкоголизм, малоподвижный образ жизни.

4. Обмен углеводов — это совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами ряда сложных соединений (нуклеопротеиды, гликопротеиды), используемых для построения клеточных структур. Суточная потребность в углеводах взрослого человека составляет 400-500 г.

Основными этапами углеводного обмена являются:

1) расщепление углеводов пищи в желудочно-кишечном тракте и всасывание моносахаридов в тонком кишечнике;

2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях;

3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли в крови (мобилизация гликогена);

4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;

5) превращение глюкозы в жирные кислоты;

6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена (полисахарид). Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена около 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разносится по всему организму, используясь как основной энергетический материал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды).

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови человека в норме 4,44-6,67 ммоль/л, при увеличении ее содержания (гипергликемии) до 8,34-10 ммоль/л она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л появляется чувство голода, до 3,22 ммоль/л — возникают судороги, бред и потеря сознания (кома).

При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Распад гликогена в печени до глюкозы — гликогенолиз. Биосинтез углеводов из продуктов их распада или продуктов распада жиров и белков — гликонеогенез. Расщепление углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот — гликолиз.

Когда поступление глюкозы превышает потребность, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источник энергии.

Нарушение нормального обмена углеводов проявляется повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена наблюдается при сахарном диабете. В основе болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой.

Источник

Белковый обмен — использование и преобразование аминокислот белков в организме человека.

При окислении (1) г белка выделяется (17,2) кДж ((4,1) ккал) энергии.

Но организм редко использует большое количество белков для покрытия своих энергетических затрат, так как белки нужны для выполнения других функций (основная функция — строительная). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

В процессе пищеварения белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к клеткам, в которых происходит синтез новых собственных белков, свойственных человеку.

Уровень содержания аминокислот в крови регулирует печень. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени из образовавшегося аммиака синтезируется мочевина (которая затем выводится вместе с водой почками в составе мочи и частично кожей), а углекислый газ выдыхается через лёгкие.

Остатки аминокислот используются как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен — совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении (1) г углеводов (глюкозы) выделяется (17,2) кДж ((4,1) ккал) энергии.

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества распадаются в процессе пищеварения до простого сахара глюкозы, всасываются ворсинками тонкого кишечника и попадают в кровь.

Глюкоза необходима для нормальной работы мозга. Снижение содержания глюкозы в плазме крови с (0,1) до (0,05) % приводит к быстрой потере сознания, судорогам и гибели.

Основная часть глюкозы окисляется в организме до углекислого газа и воды, которые выводятся из организма через почки (вода) и лёгкие (углекислый газ).

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до (300) г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

Уровень глюкозы в крови постоянный ((0,10)–(0,15) %) и регулируется гормонами щитовидной железы, в том числе инсулином. При недостатке инсулина уровень глюкозы в крови повышается, что ведёт к тяжёлому заболеванию — сахарному диабету.

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

Другой гормон поджелудочной железы — глюкагон — способствует превращению гликогена в глюкозу, тем самым повышая её содержание в крови (т. е. оказывает действие, противоположное инсулину).

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

(1) г углеводов содержит значительно меньше энергии, чем (1) г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров — совокупность процессов преобразования и использования жиров (липидов).

При распаде (1) г жира выделяется (38,9) кДж ((9,3) ккал) энергии (в (2) раза больше, чем при расщеплении (1) г белков или углеводов).

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи, всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки. 

Как и углеводы, жиры распадаются до углекислого газа и воды и выводятся тем же путём.

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

Значение жиров

  • Значительная часть энергетических потребностей печени, мышц, почек (но не мозга!) покрывается за счёт окисления жиров.
  • Липиды являются структурными элементами клеточных мембран, входят в состав медиаторов, гормонов, образуют подкожные жировые отложения и сальники.
  • Откладываясь в запас в соединительнотканных оболочках, жиры препятствуют смещению и механическим повреждениям органов.
  • Подкожный жир плохо проводит тепло, что способствует сохранению постоянной температуры тела.

Потребность в жирах определяется энергетическими потребностями организма в целом и составляет в среднем (80)–(100) г в сутки. Избыток жира откладывается в подкожной жировой клетчатке, в тканях некоторых органов (например печени), а также и на стенках кровеносных сосудов.

Если в организме недостаёт одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы — в жиры. В свою очередь жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счёт жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.

Подсчитано, что взрослому человеку для нормальной жизнедеятельности необходимо не менее (1500)–(1700) ккал в сутки. Из этого количества энергии на собственные нужды организма уходит (15)–(35) %, а остальное затрачивается на выработку тепла и поддержание температуры тела.

Источник

Обмен веществ начинается с поступления питательных веществ в желудочно-кишечный
тракт и воздуха в легкие.

Первым этапом обмена веществ являются ферментативные процессы
расщепления белков, жиров и углеводов до растворимых в воде аминокислот,
моно- и дисахаридов, глицерина, жирных кислот и других соединений,
происходящие в различных отделах желудочно-кишечного тракта, а также
всасывание этих веществ в кровь и лимфу.

Вторым этапом обмена являются транспорт питательных веществ и
кислорода кровью к тканям и те сложные химические превращения веществ,
которые происходят в клетках. В них одновременно осуществляются
расщепление питательных веществ до конечных продуктов метаболизма,
синтез ферментов, гормонов, составных частей цитоплазмы. Расщепление
веществ сопровождается выделением энергии, которая используется
для процессов синтеза и обеспечения работы каждого органа и организма
в целом.

Третьим этапом является удаление конечных продуктов распада из
клеток, их транспорт и выделение почками, легкими, потовыми железами
и кишечником.

Превращение белков, жиров, углеводов, минеральных веществ и воды
происходит в тесном взаимодействии друг с другом. В метаболизме
каждого из них имеются свои особенности, а физиологическое значение
их различно, поэтому обмен каждого из этих веществ принято рассматривать
отдельно.

Обмен белков

Белки используются в организме в первую очередь в качестве пластических
материалов. Потребность в белке определяется тем его минимальным
количеством, которое будет уравновешивать его потери организмом.
Белки находятся в состоянии непрерывного обмена и обновления. В
организме здорового взрослого человека количество распавшегося за
сутки белка равно количеству вновь синтезированного. Десять аминокислот
из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин,
фенилаланин, аргинин и гистидин) в случае их недостаточного поступления
с пищей не могут быть синтезированы в организме и называются незаменимыми.
Другие десять аминокислот (заменимые) могут синтезироваться в организме.

Из аминокислот, полученных в процессе пищеварения, синтезируются
специфические для данного вида, организма и для каждого органа белки.
Часть аминокислот используются как энергетический материал, т.е.
подвергаются расщеплению. Сначала они дезаминируются — теряют группу
Nh3 в результате образуются аммиак и кетокислоты. Аммиак является
токсическим веществом и обезвреживается в печени путем превращения
в мочевину. Кетокислоты после ряда превращений распадаются на СО2
и Н2О.

Скорость распада и обновления белков организма различна — от нескольких
минут до 180 суток (в среднем 80 суток). О количестве белка, подвергшегося
распаду за сутки, судят по количеству азота, выводимого из организма
человека. В 100 г белка содержится 16 г азота. Таким образом, выделение
организмом 1 г азота соответствует распаду 6,25 г белка. За сутки
из организма взрослого человека выделяется около 3,7 г азота, т.е.
масса разрушившегося белка составляет 3,7 х 6,25 = 23 г, или 0,028-0,075
г азота на 1 кг массы тела в сутки (коэффициент изнашивания Рубнера).

Если количество азота, поступающего в организм с пищей, равно количеству
азота, выводимого из организма, то организм находится в состоянии
азотистого равновесия.

Если в организм поступает азота больше, чем выделяется, то это
свидетельствует о положительном азотистом балансе (ретенция азота).
Он возникает при увеличении массы мышечной ткани (интенсивные физические
нагрузки), в период роста организма, беременности, во время выздоровления
после тяжелого заболевания. Состояние, при котором количество выводимого
из организма азота превышает его поступление в организм, называют
отрицательным азотистым балансом. Оно возникает при питании неполноценными
белками, когда в организм не поступают какие-либо из незаменимых
аминокислот, при белковом или полном голодании.

Необходимо потребление не менее 0,75 г белка на 1 кг массы тела
в сутки, что для взрослого здорового человека массой 70 кг составляет
не менее 52,5 г полноценного белка. Для надежной стабильности азотистого
баланса рекомендуется принимать с пищей 85 — 90 г белка в сутки.
У детей, беременных и кормящих женщин эти нормы должны быть выше.
Физиологическое значение в данном случае означает, что белки в основном
выполняют пластическую функцию, а углеводы — энергетическую.

Обмен жиров (липидов)

Липиды являются сложными эфирами глицерина и высших жирных кислот.
Жирные кислоты бывают насыщенными и ненасыщенными (содержащими одну
и более двойных связей). Липиды играют в организме энергетическую
и пластическую роль. За счет окисления жиров обеспечивается около
50% потребности в энергии взрослого организма. Жиры служат резервом
питания организма, их запасы у человека в среднем составляют 10
— 20% от массы тела. Из них около половины находятся в подкожной
жировой клетчатке, значительное количество откладывается в большом
сальнике, околопочечной клетчатке и между мышцами.

В состоянии голода, при действии на организм холода, при физической
или психоэмоциональной нагрузке происходит интенсивное расщепление
запасенных жиров. В условиях покоя после приема пищи происходит
ресинтез и отложение липидов в депо. Главную энергетическую роль
играют нейтральные жиры — триглицериды, а пластическую осуществляют
фосфолипиды, холестерин и жирные кислоты, которые выполняют функции
структурных компонентов клеточных мембран, входят в состав липопротеидов,
являются предшественниками стероидных гормонов, желчных кислот и
простагландинов.

Липидные молекулы, всосавшиеся из кишечника, упаковываются в эпителиоцитах
в транспортные частицы (хиломикроны), которые через лимфатические
сосуды поступают в кровоток. Под действием липопротеидлипазы эндотелия
капилляров главный компонент хиломикронов — нейтральные триглицериды
— расщепляются до глицерина и свободных жирных кислот. Часть жирных
кислот может связываться с альбумином, а глицерин и свободные жирные
кислоты поступают в жировые клетки и превращаются в триглицериды.
Остатки хиломикронов крови захватываются гепатоцитами, подвергаются
эндоцитозу и разрушаются в лизосомах.

В печени формируются липопротеиды для транспорта синтезированных
в ней липидных молекул. Это липопротеиды очень низкой и липопротеиды
низкой плотности, которые транспортируют из печени к другим тканям
триглицериды, холестерин. Липопротеиды низкой плотности захватываются
из крови клетками тканей с помощью липопротеидных рецепторов, эндоцитируются,
высвобождают для нужд клеток холестерин и разрушаются в лизосомах.
В случае избыточного накопления в крови липопротеидов низкой плотности,
они захватываются макрофагами и другими лейкоцитами. Эти клетки,
накапливая метаболически низкоактивные эфиры холестерина, становятся
одними из компонентов атеросклеротических бляшек сосудов.

Липопротеиды высокой плотности транспортируют избыточный холестерин
и его эфиры из тканей в печень, где они превращается в желчные кислоты,
которые выводятся из организма. Кроме того, липопротеиды высокой
плотности используются для синтеза стероидных гормонов в надпочечниках.

Как простые, так и сложные липидные молекулы могут синтезироваться
в организме, за исключением ненасыщенных линолевой, линоленовой
и арахидоновой жирных кислот, которые должны поступать с пищей.
Эти незаменимые кислоты входят в состав молекул фосфолипидов. Из
арахидоновой кислоты образуются простагландины, простациклины, тромбоксаны,
лейкотриены. Отсутствие или недостаточное поступление в организм
незаменимых жирных кислот приводит к задержке роста, нарушению функции
почек, заболеваниям кожи, бесплодию. Биологическая юность пищевых
липидов определяется наличием в них незаменимыx жирных кислот и
их усвояемостью. Сливочное масло и свиной жир усваиваются на 93
— 98%, говяжий — на 80 — 94%, подсолнечное масло — на 86- 90%, маргарин
— на 94-98%.

Обмен углеводов

Углеводы являются основным источником энергии, а также выполняют
в организме пластические функции, в ходе окисления глюкозы образуются
промежуточные продукты — пентозы, которые входят в состав нуклеотидов
и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот,
синтеза и окисления липидов, полисахаридов. Организм человека получает
углеводы главным образом в виде растительного полисахарида крахмала
и в небольшом количестве в виде животного полисахарида гликогена.
В желудочно-кишечном тракте осуществляется их расщепление до уровня
моносахаридов (глюкозы, фруктозы, лактозы, галактозы).

Моносахариды, основным из которых является глюкоза, всасываются
в кровь и через воротную вену поступают в печень. Здесь фруктоза
и галактоза превращаются в глюкозу. Внутриклеточная концентрация
глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном
поступлении в печень глюкозы она фосфорилируется и превращается
в резервную форму ее хранения — гликоген. Количество гликогена может
составлять у взрослого человека 150-200 г. В случае ограничения
потребления пищи, при снижении уровня глюкозы в крови происходит
расщепление гликогена и поступление глюкозы в кровь.

В течение первых 12 часов и более после приема пищи поддержание
концентрации глюкозы крови обеспечивается за счет распада гликогена
в печени. После истощения запасов гликогена усиливается синтез ферментов,
обеспечивающих реакции глюконеогенеза — синтеза глюкозы из лактата
или аминокислот. В среднем за сутки человек потребляет 400-500 г
углеводов, из которых обычно 350 — 400 г составляет крахмал, а 50
— 100 r — моно- и дисахариды. Избыток углеводов депонируется в виде
жира.

Обмен воды и минеральных веществ

Содержание воды в организме взрослого человека составляет в среднем
73,2±3% от массы тела. Водный баланс в организме поддерживается
за счет равенства объемов потерь воды и ее поступления в организм.
Суточная потребность в воде колеблется от 21 до 43 мл/кг (в среднем
2400 мл) и удовлетворяется за счет поступления воды при питье (~1200
мл), с пищей (~900 мл) и воды, образующейся в организме в ходе обменных
процессов (эндогенной воды (~300 мл). Такое же количество воды выводится
в составе мочи (~1400 мл), кала (~100 мл), посредством испарения
с поверхности кожи и дыхательных путей (~900 мл).

Потребность организма в воде зависит от характера питания. При
питании преимущественно углеводной и жирной пищей и при небольшом
поступлении NaCI потребности в воде меньше. Пища, богатая белками,
а также повышенный прием соли обусловливают большую потребность
в воде, которая необходима для экскреции осмотически активных веществ
(мочевины и минеральных ионов). Недостаточное поступление в организм
воды или ее избыточная потеря приводят к дегидратации, что сопровождается
сгущением крови, ухудшением ее реологических свойств и нарушением
гемодинамики.

Недостаток в организме воды в объеме 20% от массы тела ведет к
летальному исходу. Избыточное поступление воды в организм или снижение
ее объемов, выводимых организма, приводит к водной интоксикации.
В результате повышенной чувствительности нервных клеток и нервных
центров к уменьшению осмолярности водная интоксикация может сопровождаться
мышечными судорогами.

Обмен воды и минеральных ионов в организме тесно взаимосвязаны,
что обусловлено необходимостью поддержания осмотического давления
на относительно постоянном уровне во внеклеточной среде и в клетках.
Осуществление ряда физиологических процессов (возбуждения, синоптической
передачи, сокращения мышцы) невозможно без поддержания в клетке
и во внеклеточной среде определенной концентрации Na+, K+, Са2+
и других минеральных ионов. Все они должны поступать в организм
с пищей.

[ Определение уровня метаболизма. Основной обмен | Теоретические основы питания. Калорийность пищевого рациона
]

Смотрите также:

У нас также читают:

Источник