Витамины и атф по биологии

Витамины и атф по биологии thumbnail

АТФ и другие соединения клетки (витамины)

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ).

В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия, которая освобождается при отщеплении органического фосфата: АТФ = АДФ + Ф + Е, где Ф — фермент, Е — освобождающаяся энергия. В этой реакции образуется аденозиндифосфорная кислота (АДФ) — остаток молекулы АТФ и органический фосфат.

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений (например, у люминесцентных бактерий), т.е. для всех процессов жизнедеятельности.

АТФ — универсальный биологический аккумулятор энергии, который синтезируется в митохондриях (внутриклеточных органоидах).

Митохондрия, таким образом, исполняет в клетке роль «энергетической станции». Принцип образования АТФ в хлоропластах клеток растений в общем тот же — использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей.

Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату (АДФ), что и приводит к синтезу АТФ.

Витамины: Vita — жизнь.

Витамины — биологически активные вещества, синтезирующиеся в организме или поступающие с пищей, которые в малых количествах необходимы для нормального обмена веществ и жизнедеятельности организма.

В 1881г. русский врач Н.И. Лунин произвел опыты над двумя группами мышей. Одних он кормил натуральным молоком, других- искусственной смесью, куда входили белки, жиры, углеводы ,соли и вода в тех же пропорциях, что и в молоке.

Животные второй группы вскоре погибли. Лунин решил, что в пище есть какое-то незаменимое вещество, необходимое для поддержания жизни.

В 1911г. Польский химик К. Функ выделил из рисовых отрубей вещество, излечивающее параличи голубей, питавшихся только полированным рисом. Химический анализ этого вещества показал, что в его состав входит азот.

Открытое им вещество Функ назвал витамином (от слов «вита»- жизнь и «амин»- содержащий азот.

Витамины поступают в организм в основном с пищей. Некоторые из них синтезируются в кишечнике под влиянием жизнедеятельности микроорганизмов, но образующиеся количества витаминов не всегда обеспечивает полное удовлетворение потребностей организма.

Биологическая роль витаминов заключается в их регулярном действии на обмен веществ. Витамины обладают каталитическими свойствами, то есть способностью стимулировать химические реакции, протекающие в организме, а также активно участвуют в образовании и функции ферментов. Витамины влияют на усвоение организмом питательных веществ, способствуют нормальному росту клеток и развитию всего организма. Являясь составной частью ферментов, витамины определяют их нормальную функцию и активность. Таким образом, недостаток в организме какого-либо витамина ведет к нарушению процессов обмена веществ.

Группы витаминов:

Жирорастворимые

А — ретинол

Д — кальциферол

Е — токоферол

К — филлохиноны

Водорастворимые

С — аскорбиновая кислота

В1, В2, В5, В6, В9, В12

РР или В3 — никотиновая кислота

СУТОЧНАЯ ПОТРЕБНОСТЬ В ВИТАМИНАХ

С — аскорбиновая кислота: 70 — 100 мг.

В — тиамин: 1,5 — 2,6 мг.

В — рибофлавин: 1,8 — 3 мг.

А — ретинол: 1,5 мг.

D — кальциферол: для детей и взрослых 100 МЕ,

до 3 лет 400 МЕ.

Е — токоферол: 15 — 20 мг.

Источник

АТФ. Витамины Общая биология, 9 класс Орлова Ю.Ю. Урок № 10

Описание презентации по отдельным слайдам:

1 слайд

АТФ. Витамины Общая биология, 9 класс Орлова Ю.Ю. Урок № 10

Описание слайда:

АТФ. Витамины Общая биология, 9 класс Орлова Ю.Ю. Урок № 10

2 слайд

АТФ АТФ (аденозинтрифосфат) – нуклеотид. Содержится в цитоплазме, митохондрия

Описание слайда:

АТФ АТФ (аденозинтрифосфат) – нуклеотид. Содержится в цитоплазме, митохондриях, пластидах и ядрах. 40 кДж/моль энергии

3 слайд

Читайте также:  Анализ крови кальций и витамин д

АДФ АДФ – аденозиндифосфат.

Описание слайда:

АДФ АДФ – аденозиндифосфат.

4 слайд

АМФ АМФ – аденозинмонофосфат.

Описание слайда:

АМФ АМФ – аденозинмонофосфат.

5 слайд

Витамины Витамины – сложные биоорганические соединения, необходимые в малых к

Описание слайда:

Витамины Витамины – сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. Поступают с пищей или синтезируются самим организмом.

6 слайд

Витамины и атф по биологии

7 слайд

Витамин А (ретинол) Продукты: рыбий жир, яйца, сливочное масло, сыр, морковь,

Описание слайда:

Витамин А (ретинол) Продукты: рыбий жир, яйца, сливочное масло, сыр, морковь, зеленый лук, рябина, облепиха, щавель. Значение: куриная слепота, нарушение роста, сухость, шелушение кожи.

8 слайд

Витамин В1 (тиамин) Продукты: мука, дрожжи, яйца, бобовые и злаковые культуры

Описание слайда:

Витамин В1 (тиамин) Продукты: мука, дрожжи, яйца, бобовые и злаковые культуры. Значение: болезнь бери-бери, нарушение функций нервной системы, усиление возбудимости, нарушение обмена веществ.

9 слайд

Витамин В2 (рибофлавин) Продукты: дрожжи, молоко, яйца, говядина. Значение: н

Описание слайда:

Витамин В2 (рибофлавин) Продукты: дрожжи, молоко, яйца, говядина. Значение: нарушение белкового и жирового обмена, заболевание кожи, нарушение зрения.

10 слайд

Витамин В12 (цианокобаламин) Продукты: печень, почки, рыба. Значение: малокро

Описание слайда:

Витамин В12 (цианокобаламин) Продукты: печень, почки, рыба. Значение: малокровие (снижение концентрации гемоглобина в крови).

11 слайд

Витамин С (аскорбиновая кислота) Продукты: черная смородина, шиповник, цитрус

Описание слайда:

Витамин С (аскорбиновая кислота) Продукты: черная смородина, шиповник, цитрусовые, зеленый лук, икра. Значение: иммунитет, цинга.

12 слайд

Витамин D (кальциферол) Продукты: рыбий жир, печень, масло, яйца. Значение: р

Описание слайда:

Витамин D (кальциферол) Продукты: рыбий жир, печень, масло, яйца. Значение: рахит, размягчение костей.

13 слайд

Витамин К Продукты: мясо, рыба, молоко. Значение: свертывание крови.

Описание слайда:

Витамин К Продукты: мясо, рыба, молоко. Значение: свертывание крови.

14 слайд

Витамин Е (токоферол) Продукты: растительное масло, горох, кукуруза. Значение

Описание слайда:

Витамин Е (токоферол) Продукты: растительное масло, горох, кукуруза. Значение: укрепление мышц и функции половых желез.

15 слайд

Домашнее задание § 1.7.

Описание слайда:

Домашнее задание § 1.7.

Выберите книгу со скидкой:

Витамины и атф по биологии

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА

Инфолавка — книжный магазин для педагогов и родителей от проекта «Инфоурок»

Витамины и атф по биологии

Курс профессиональной переподготовки

Учитель биологии

Витамины и атф по биологии

Курс повышения квалификации

Витамины и атф по биологии

Курс профессиональной переподготовки

Учитель биологии и химии

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Номер материала:

ДВ-168466

Вам будут интересны эти курсы:

Оставьте свой комментарий

Источник

Аденозинтрифосфорная кислота — АТФ

Нуклеотиды являются структурной основой для целого ряда важных для жизнедеятельности органических веществ, например макроэргических соединений.
Универсальным источником энергии во всех клетках служит АТФ — аденозинтрифосфорная кислота, или аденозинтрифосфат.
АТФ содержится в цитоплазме, митохондриях, пластидах и ядрах клеток и является наиболее распространённым и универсальным источником энергии для большинства биохимических реакций, протекающих в клетке.
АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтез веществ, деление и т. д. В среднем содержание АТФ в клетке составляет около (0,05) % её массы, но в тех клетках, где затраты АТФ велики (например, в клетках печени, поперечнополосатых мышц), её содержание может доходить до (0,5) %.

Строение АТФ

АТФ представляет собой нуклеотид, состоящий из азотистого основания — аденина, углевода рибозы и трёх остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при её разрыве выделяется почти в (4) раза больше энергии, чем при расщеплении других химических связей.

АТФ — неустойчивая структура, и при отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), высвобождая (40) кДж энергии.

Другие производные нуклеотидов

Особую группу производных нуклеотидов составляют переносчики водорода. Молекулярный и атомарный водород обладает большой химической активностью и выделяется или поглощается в ходе различных биохимических процессов. Одним из наиболее широко распространённых переносчиков водорода является никотинамиддинуклеотидфосфат (НАДФ).

Молекула НАДФ способна присоединять два атома или одну молекулу свободного водорода, переходя в восстановленную форму НАДФ·H2. В таком виде водород может быть использован в различных биохимических реакциях.
Нуклеотиды могут также принимать участие в регуляции окислительных процессов в клетке.

Витамины

Витамины (от лат. vita — «жизнь») — сложные биоорганические соединения, совершенно необходимые в малых количествах для нормальной жизнедеятельности живых организмов. От других органических веществ витамины отличаются тем, что не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины), другие витамины поступают в организм с пищей.
Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах (они делятся на две группы: водорастворимые (B1, B2, B5, B6, B12, PP, C) и жирорастворимые (A, D, E, K)).

Читайте также:  Какие витамины надо для мозга

Витамины участвуют практически во всех биохимических и физиологических процессах, составляющих в совокупности обмен веществ. Как недостаток, так и избыток витаминов может привести к серьёзным нарушениям многих физиологических функций в организме.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

https://biouroki.ru/test/114.html

https://dic.academic.ru/dic.nsf/%20ruwiki/208102

Источник

Аденозинтрифосфат

Сокращения АТФ (англ. ATP)
Хим. формула C10H16N5O13P3
Молярная масса 507,18 г/моль
Температура
 • разложения 144 °C[1]
Растворимость
 • в воде растворимость в воде (20 °C) — 5 г/100 мл
Рег. номер CAS 56-65-5
PubChem 5957
Рег. номер EINECS 200-283-2
SMILES

Nc1ncnc2c1ncn2C3OC(OP(=O)(O)OP(=O)(O)OP(=O)(O)O)C(O)C3O

InChI

1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1

ZKHQWZAMYRWXGA-KQYNXXCUSA-N

ChEBI 15422
ChemSpider 5742
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

3D-молекула аденозинтрифосфорной кислоты (GIF)

Аденозинтрифосфа́т или Аденозинтрифосфорная кислота (сокр. АТФ, англ. АТР) — нуклеозидтрифосфат, имеющий большое значение в обмене энергии и веществ в организмах. АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в живых системах, в частности для образования ферментов. Открытие вещества произошло в 1929 году группой учёных Гарвардской медицинской школы — Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао[2], а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке[3].

Химические свойства[править | править код]

Структура аденозинтрифосфорной кислоты

Систематическое наименование АТФ:

9-β-D-рибофуранозиладенин-5′-трифосфат, или
9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат.

Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.

Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1′-углеродом рибозы. К 5′-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.

АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.

АТФ + H2O → АДФ + H3PO4 + энергия
АТФ + H2O → АМФ + H4P2O7 + энергия

Высвобождённая энергия используется в разнообразных процессах, протекающих с затратой энергии.

Роль в организме[править | править код]

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Помимо энергетической, АТФ выполняет в организме ещё ряд других не менее важных функций:

  • Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
  • Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
  • АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
  • Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях (пуринергическая передача сигнала).

Пути синтеза[править | править код]

В организме АТФ синтезируется путём фосфорилирования АДФ:

АДФ + H3PO4 + энергия → АТФ + H2O.

Фосфорилирование АДФ возможно тремя способами:

  • субстратное фосфорилирование,
  • окислительное фосфорилирование,
  • фотофосфорилирование в процессе фотосинтеза у растений.

В первых двух способах используется энергия окисляющихся веществ. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АДФ не требует участия мембранных ферментов, оно происходит в цитоплазме в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.

Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

См. также[править | править код]

  • Фосфорилирование
  • Гликолиз
  • Цикл Кребса

Примечания[править | править код]

Литература[править | править код]

  • Voet D, Voet JG. Biochemistry Vol 1 3rd ed (неопр.). — Wiley: Hoboken, NJ., 2004. — ISBN 978-0-471-19350-0.
  • Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Molecular Cell Biology, 5th ed (неопр.). — New York: WH Freeman, 2004. — ISBN 9780716743668.

Источник

В биологии АТФ – это источник энергии и основа жизни. АТФ – аденозинтрифосфат – участвует в процессах метаболизма и регулирует биохимические реакции в организме.

Витамины и атф по биологии

Что это?

Понять, что такое АТФ, поможет химия. Химическая формула молекулы АТФ – C10H16N5O13P3. Запомнить полное название несложно, если разбить его на составные части. Аденозинтрифосфат или аденозинтрифосфорная кислота – нуклеотид, состоящий из трёх частей:

  • аденина – пуринового азотистого основания;
  • рибозы – моносахарида, относящегося к пентозам;
  • трёх остатков фосфорной кислоты.

Строение молекулы АТФ

Рис. 1. Строение молекулы АТФ.

Более подробная расшифровка АТФ представлена в таблице.

Составные части

Формула

Описание

Аденин

C5H5N5

Производное пурина, входит в состав жизненно важных нуклеотидов. Не растворим в воде

Рибоза

C5H10O5

Пятиуглеродный сахар, входящий в состав нуклеотидов, в том числе РНК

Фосфорная кислота

Н3РО4

Неорганическая кислота, быстро растворимая в воде

АТФ впервые обнаружили гарвардские биохимики Суббарао, Ломан, Фиске в 1929 году. В 1941 году немецкий биохимик Фриц Липман установил, что АТФ является источником энергии живого организма.

Образование энергии

Фосфатные группы соединены между собой высокоэнергетическими связями, которые легко разрушаются. При гидролизе (взаимодействии с водой) связи фосфатной группы распадаются, высвобождая большое количество энергии, а АТФ превращается в АДФ (аденозиндифосфорную кислоту).

Условно химическая реакция выглядит следующим образом:

ТОП-4 статьикоторые читают вместе с этой

АТФ + Н2О → АДФ + Н3РО4 + энергия

Гидролиз АТФ

Рис. 2. Гидролиз АТФ.

Часть высвободившейся энергии (около 40 кДж/моль) участвует в анаболизме (ассимиляции, пластическом обмене), часть – рассеивается в виде тепла для поддержания температуры тела. При дальнейшем гидролизе АДФ отщепляется ещё одна фосфатная группа с высвобождением энергии и образованием АМФ (аденозин-монофосфата). АМФ гидролизу не подвергается.

Синтез АТФ

АТФ располагается в цитоплазме, ядре, хлоропластах, в митохондриях. Синтез АТФ в животной клетке происходит в митохондриях, а в растительной – в митохондриях и хлоропластах.

АТФ образуется из АДФ и фосфата с затратой энергии. Такой процесс называется фосфорилированием:

АДФ + Н3РО4 + энергия → АТФ + Н2О

Образование АТФ из АДФ

Рис. 3. Образование АТФ из АДФ.

В растительных клетках фосфорилирование происходит при фотосинтезе и называется фотофосфорилированием. У животных процесс протекает при дыхании и называется окислительным фосфорилированием.

В животных клетках синтез АТФ происходит в процессе катаболизма (диссимиляции, энергетического обмена) при расщеплении белков, жиров, углеводов.

Функции

Из определения АТФ понятно, что эта молекула способна давать энергию. Помимо энергетической аденозинтрифосфорная кислота выполняет другие функции:

  • является материалом для синтеза нуклеиновых кислот;
  • является частью ферментов и регулирует химические процессы, ускоряя или замедляя их протекание;
  • является медиатором – передаёт сигнал синапсам (местам контакта двух клеточных мембран).

Что мы узнали?

Из урока биологии 10 класса узнали о строении и функциях АТФ – аденозинтрифосфорной кислоты. АТФ состоит из аденина, рибозы и трёх остатков фосфорной кислоты. При гидролизе фосфатные связи разрушаются, что высвобождает энергию, необходимую для жизнедеятельности организмов.

Тест по теме

Оценка доклада

Средняя оценка: 4.6. Всего получено оценок: 708.

Источник

Читайте также:  Нехватка витамина в12 у ребенка